STORM PLASTICS

Storm Plastics

MANUFACTURERS OF SPECIALISED PVC-U PLUMBING PRODUCTS

-----DRAINAGE REQUIREMENTS – AS 2870-2011 & AS 2032-2006.

THE MAIN PRODUCTS

Swivel Expansion Joint 100mm DWV +/- 50mm Expansion

50_{mm}

15°

15°

0

FOUNDATION **Expander Joint** 100DWV 150 mm linear expansion

floor trap

470m m 8 20mm 160 mr Allows Expanda to n the string

Tamworth Seminar, July, 2012

laundry

THE INSIDE COATING

THE COMBO BEND - 100mm MOVEMENT 30^{degree} DEFLECTION

THE COMBO STRAIGHT - 100mm MOVEMENT

30^{degree} **DEFLECTION**

THE 'BAZOOKA' – 500 mm MOVEMENT

THE RANGE – from 50 mm MOVEMENT ... to suit ALL - ys - requirements

ARTICULATION MOVEMENT

SWIVEL MOVEMENT

With one Swivel, at a deflection of 15 degrees either side of centre, over a length of 500mm, the Swivel unit allows 295mm of horizontal and vertical movement.

With two Swivels, at a deflection of 15 degrees either side of centre, over a length of approx. 1000mm, the Swivel units allow a pipe deflection of 400mm to 920mm, of horizontal and vertical movement.

By using a combination of Swivel Joints all reactive soil movements can be remedied.

Some applications may only need one, but to have the articulation effect..ie enable misalignment without stressing pipeline, two are required.

NON FLEXIBLE INSTALL

CREEP & SLIP

Bazooka applications

THE STANDARD: AS2870-2011

Now linked to AS3500 and part of the Plumbers code

THE STANDARD: AS2870-2011

As2870-2011 is the most radical change to interpreting Soils and House Engineering we have seen since 1986 and several trades will need to update their current knowledge.

AS 2870-2011 Drainage Requirements

Section 1.

The site classification **shall** be stated on the drawings.

The selected footing system and any required site work and required site drainage **shall** be documented.

MOVING INTO REACTIVE SOILS

In the greater Melbourne area,

Housing developments expand further into areas of REACTIVE SOILS.

MOVING INTO REACTIVE SOILS

In the greater Melbourne area, **60-70% of** Housing developments expand further into areas of REACTIVE SOILS.

> Sydney and Brisbane are similar

ITS NOT JUST FLOW!!

The Grade of Fall is of great importance. Reduction from 1:60 to 1:80 in grade, and often shallower (to suit take off heights) causes materialfluid <u>separation</u> and <u>congestion</u> due to poor <u>flow</u> rates. Already happening.

ITS NOT JUST FLOW!!

The Grade of Fall is of great importance. Reduction from 1:60 to 1:80 in grade, and often shallower (to suit take off heights) causes materialfluid **separation** and **congestion** due to poor **flow** rates. Already happening.

SELF CLEANING FLOW IS PARAMOUNT IN REACTIVE SOILS.

SOIL CLASSIFICATION	SOIL DESCRIPTION	DIFFERENTIAL MOVEMENT	SEWER DRAIN GRADE
А	Most sand & rock	Zero	
S	Slightly reactive	0 – 20 mm	
М	Moderately reactive	20 – 40 mm	
H1	Highly reactive	40 – 60 mm	
H2	Very Highly reactive	60 – 75 mm	
E	Extremely reactive	75 mm +	
Р	All other soils	As Tested	

SOIL CLASSIFICATION	SOIL DESCRIPTION	DIFFERENTIAL MOVEMENT	SEWER DRAIN GRADE
А	Most sand & rock	Zero	
S	Slightly reactive	0 – 20 mm	1 : 60 (167 mm in 10 M)
М	Moderately reactive	20 – 40 mm	
H1	Highly reactive	40 – 60 mm	
H2	Very Highly reactive	60 – 75 mm	
E	Extremely reactive	75 mm +	
Р	All other soils	As Tested	

SOIL CLASSIFICATION	SOIL DESCRIPTION	DIFFERENTIAL MOVEMENT	SEWER DRAIN GRADE
А	Most sand & rock	Zero	
S	Slightly reactive	0 – 20 mm	1 : 60 (167 mm in 10 M)
М	Moderately reactive	20 – 40 mm	
H1	Highly reactive	40 – 60 mm	1:50
H2	Very Highly reactive	60 – 75 mm	(200 mm in 10 M)
E	Extremely reactive	75 mm +	
Р	All other soils	As Tested	

SOIL CLASSIFICATION	SOIL DESCRIPTION	DIFFERENTIAL MOVEMENT	SEWER DRAIN GRADE
А	Most sand & rock	Zero	
S	Slightly reactive	0 – 20 mm	1 : 60 (167 mm in 10 M)
М	Moderately reactive	20 – 40 mm	
H1	Highly reactive	40 – 60 mm	1:50
H2	Very Highly reactive	60 – 75 mm	(200 mm in 10 M)
E	Extremely reactive	75 mm +	1 : 50 / 1 : 40 (200-250 mm in 10 M)
Р	All other soils	As Tested	

DRAIN GRADE FORMED BY 1/4 MINUS OR GRAVEL BED

1. The drain GRADE should NEVER be created by the 1/4 minus or gravel bed alone.

Reasons:- Any leakage from broken pipes or junctions will **filter** thru the gravel and swell the soil. Outside rainwater will capillary to the dry soil **under** the slab and cause structural heave.

2. The Clay Plug MUST seal to the bottom of the trench.

Reason:- The trench outside the building footprint contains **air** in the backfill and allows rain water to percolate and fill inside much quicker than non trenched ground. Without trench GRADE and without the Clay Plug sealing to the bottom of the trench, water can seep/capillary back **inside** the building footprint and cause structural heave. The level of rainfall and depth of trench are factors that **accelerate** this heave effect.

UNDER SLAB DRAINAGE

DRAIN GRADE FORMED BY 1/4 MINUS OR GRAVEL BED

1. The drain GRADE should NEVER be created by the 1/4 minus or gravel bed alone.

Reasons:- Any leakage from broken pipes or junctions will **filter** thru the gravel and swell the soil. Outside rainwater will capillary to the dry soil **under** the slab and cause structural heave.

2. The Clay Plug MUST seal to the bottom of the trench.

Reason:- The trench outside the building footprint contains **air** in the backfill and allows rain water to percolate and fill inside much quicker than non trenched ground. Without trench GRADE and without the Clay Plug sealing to the bottom of the trench, water can seep/capillary back **inside** the building footprint and cause structural heave. The level of rainfall and depth of trench are factors that **accelerate** this heave effect.

DRAIN GRADE FORMED BY 1/4 MINUS OR GRAVEL BED

1. The drain GRADE should NEVER be created by the 1/4 minus or gravel bed alone.

Reasons:- Any leakage from broken pipes or junctions will **filter** thru the gravel and swell the soil. Outside rainwater will capillary to the dry soil **under** the slab and cause structural heave.

2. The Clay Plug MUST seal to the bottom of the trench.

T = Bottom of Trench Reason:- The trench outside the building footprint contains **air** in the backfill and allows rain water to percolate and fill inside much quicker than non trenched ground. Without trench GRADE and without the Clay Plug sealing to the bottom of the trench, water can seep/capillary back **inside** the building footprint and cause structural heave. The level of rainfall and depth of trench are factors that **accelerate** this heave effect.

EXPANSION JOINT LAYOUT

EXPANSION JOINT LAYOUT

Unless otherwise specified, these joints are to be set at 50% of their sliding ability

ZERO SIDE AREA

Tamworth Seminar, July, 2012

EXPANSION JOINT LAYOUT

Tamworth Seminar, July, 2012

DRAINAGE CHOICES...

THE 'e' FACTOR

The 'e' Factor came about from the Walsh method mentioned in Appendix F In AS2870-2011 where movement occurs over an 'edge distance' (e) which applies to both Edge and Centre heave on slab design.

DRAINAGE CHOICES...

MORE CONCERNS...

Water problems...?

Trench failures occur due to incorrect installation and poor compaction.

Tamworth Seminar, July, 2012

The root of all problems

WHO IS RESPONSIBLE?

The Owner is responsible for 'unbalanced' garden watering.(*This changes moisture balance*)

MORE MOVEMENT

Tamworth Seminar, July, 2012

MORE MOVEMENT

CONDEMNED!

WHEN SOILS MOVE, ALL ELSE FOLLOWS

Tamworth Seminar, July, 2012

CONDEMNED!

Tamworth Seminar, July, 2012

Ready to pour.....

.....ready to break

BUILT IN PROBLEMS

BUILT IN PROBLEMS

Tamworth Seminar, July, 2012

THE STANDARD: AS2870-2011

Now incorporates Flexible Couplings in Sewer and Stormwater installations in

Reactive soils

AS 2870-2011 DRAINAGE REQUIREMENTS

RETENTION WALL DRAINAGE

Information courtesy by D Lopes

Tamworth Seminar, July, 2012

RETENTION WALL DRAINAGE

RETENTION WALL DRAINAGE

Information courtesy by D Lopes

Tamworth Seminar, July, 2012

FLEXIBILITY?

Although a good alternative to replacing and excavating entire drains, relining, by design, does not allow for any movement in any reactive soils. Expansion and Swivel Joints are necessary for this method.

What's the problem?

WHAT DOES STANDARDS SAY ?

LAGGING: Must be....a) Non-absorbent

- b) very flexible
- c) the right thickness

This means......a minimum of 20 mm thick on H1 Soils

Anda minimum of **40**mm thick in H₂ and E Soils

CARPET UNDERLAY? – NO.

• Styrene is used as a simple method but is available in only one thickness and has minimal compressibility resulting in high stress-transfer to junctions

• Closed Cell Polyethylene lagging can be layered to provide 20mm on highly reactive sites or 40mm if in extremely reactive areas. Benefits of high compressibility results in reduced stresstransfer to junctions.

REACTIVE SOILS IMPACT

REACTIVE SOILS IMPACT

Tamworth Seminar, July, 2012

REACTIVE SOILS IMPACT

DEEP REPAIR

PROTECTED SYSTEM

Tamworth Seminar, July, 2012

SLIPPED....

Tamworth Seminar, July, 2012

DRAINAGE SUSPENSION

Drainage construction alternative:

 All underslab drainage systems could be tied into the slab. All movement can then be accommodated OUTSIDE the building with one Joint.

DRAINAGE SUSPENSION

DRAINAGE SUSPENSION

RESTRICTED ACCESS INSTALL

TREES ARE CLEVER...

Tamworth Seminar, July, 2012
WHO IS RESPONSIBLE?

 Additional Tree planting, after handover, is the responsibility of the Owner.(This changes the block's soil ratings)

COULDN'T GIVE A ROOT?

Roots can penetrate **Rubber Sleeve** Joints with serious consequences.

RUBBER SLEEVES DON'T EXPAND

AS 2870-2011 DRAINAGE REQUIREMENTS

Clause 5.6.3

(a).....The drainage system **shall** be completed by the finish of the construction of the building

(b)The base of trenches **Shall** be sloped away from the building. Trenches shall be backfilled with clay in the top 300 mm within 1.5m of the building

PLUMBING IN REACTIVE SOILS..

INSPECTION CHAMBERS

RURAL Applications : H2 / E Class and or SLIP SITES

RURAL Applications : H2 / E Class and or SLIP SITES

Is this a plumbing Problem??

Sodic Soil + Plumbing leaks + heavy rainfall = Disaster

Summary

60 to 70% of Residential housing, in Victoria and the Greater New South Wales area are currently being **built** on **REACTIVE SOILS**.

Drainage problems **will** increase maintenance costs if AS 2870-2011 and AS 2032-2006 regulations are **not** followed.

Storm Plastics

STORM PLASTICS

MANUFACTURERS OF SPECIALISED PVC-U PLUMBING PRODUCTS

ENGINEERS AUSTRALIA - STH WEST GROUP - VICTORIA

PS TSARTA