Management of Dispersive Soils in Urban Areas.

By Marcus Hardie

Research Fellow

- TIAR Tasmanian Institute Agricultural Research
- University of Tasmania.
- DPIW Dept. Primary Industry and Water.
- CSIRO Sustainable Ecosystems
- PhD Candidate.

Problems: Roads and Culverts

Problems: Drains and Culverts

Problems: Excavation & Foundations

Richmond: Vineyard Factory

Problems: Cables & Pipes

Dunalley : Dolerite / T. Sandstone

Chain of Lagoons: Granite

Dunalley : T. Sandstone

Problems: Dam Failure

Penna: Permian Mudstone.

Tunbridge: Blackman Crk. Dam

Problems: Removal of Topsoil

Brighton

Problems: Septic Systems

Honeywood: Triassic Sandstone

Problems: Sedimentation & Turbidity

Honeywood: Triassic Sandstone

Problems: Tunnel Driven Gully Erosion

Problems: 10 + Years After Disturbance

Woodbridge: Permian Mudstone

Queensland Examples

- Tunnelling
- Gully formation
- Erosion
- High Suspended Sediment Loads
- Riverine Contamination

Queensland Examples

Tunnelling of sandy material - lateral water flow under road creating with tunnel at lowest point where pore Courtesy of pressures are greatest

Areas of patched road due to slumpage associated with tunnelling

Tunnel in a dam wall at Withcott Courtesy of

What is a Dispersive Soil

Dispersive Soils

- Appear to 'dissolve' in water.
- Responsible for tunnel erosion.
- Dispersive soils are usually sodic.
- Structurally unstable, require special consideration for development.

Dispersion: Process where individual clay platelets separate from clay structures.

Dried Aggregates in Rainwater

Dispersion

Dispersion of Sodium Based Clay Structures

- Weakness caused by large monovalent ion.
- Diffuse double layer of electrons around Na ion
- Double layer of hydration
- Clay swelling
- In low electrolyte water ~ Dispersion
- In high electrolyte ~ Swelling

What is a Sodic Soil

• ESP Greater than 6

Exchangeable Sodium (ESP) = Exchangeable Na x 100 Percentage Cation Exchange Capacity

Definition of sodic soilsNon-sodic- ESP <6</td>Sodic- ESP 6-14Strongly sodic- ESP ≥15

Sodic Soils: National Snapshot.

- 200 million Ha: Area affected by sodicity
- 5 times: Proportion of sodic vs saline affected land
- 90 million ha: Area of pasture and cropping country directly affected.
- \$ 6.75 Billion: Estimated yield loss for wheat alone

(National Audit soil sodicity)

Approx. 30% of Australia is sodic

Sodicity and Soil Classification

Distribution of Sodic Soils in QLD

By area: 25% Strongly Sodic 20% Variably Sodic (Shaw *et al.* 1995)

Distribution of Sodic Soils (SE Qld)

Activities that increase likelihood of tunnel erosion / soil dispersion.

- Overgrazing
- Removing topsoil
- Excavation of dispersive soil
- Poor compaction of sodic clay
- Concentration of runoff
- Septic trenches
- Drains and Culverts

Prevention Strategies

1). Awareness and Education

- Development of Guidelines
- Extension support & advice (?)

2). Avoidance

Test and map presence of dispersive soils

3). Prevent rainwater coming into contact with subsoils

- Avoid ponding water
- · Don't remove topsoil
- Cover exposed subsoils with topsoil
- Minimise excavations
- Raintank Outlets, culverts etc

Prevention Strategies

<u>4). Compaction</u>

- Compact exposed subsoils (approx 98% proctor).
- Compact structurally important dispersive soils ie dams

5). Chemical Amendment

- Application of Gypsum or hydrated Lime
- Around 2% by weight for structures, ie dams, reclaimed areas.
- 0.5-1.5 t/ha for broadscale land management
- Get Soil Tests

6). Land & Water Management

- Prevent concentrating surface water ie culverts
- Spread captured water on high areas away from buildings
- Treat water or discharge areas with gypsum.
- Maintain healthy pasture

Identifying Dispersive Soils

Spew Holes

Dribble Patterns

Muddy dams

Pocketing

Identifying Dispersive Soils : Field Techniques.

of crumbs vaguely defined.

- 1). Collect soil aggregates (1-2 cm diameter)
- 2). Dry aggregates in the sun for a few hours
- 3). Place the aggregates distilled water.

defined.

Tasmania

4). Observe presence of milky ring around the aggregates after 20 mins &60 mins.

to be defined.

Identifying Dispersive Soils -Analytical Approaches

Chemical tests.

- Exchangeable Sodium Percent (ESP)
- Sodium Absorption Ratio (SAR).

Physical tests

- Emerson soil crumb test (AS 1289.3.8.1-1997)
- Pinhole test (AS 1289.3.8.3 1997)
- Dispersion Index
- Double Hydrometer test

Pinhole test for compacted soils & fill. (Photo, Raine & Loch 2003).

ESP =

Combined Chemical & Physical Tests (Rengasamy 2002).

- Measurement of clay dispersion (514.01)
- Measurement of dispersive potential (514.03).

	a

 $Na^{\scriptscriptstyle +} + Mg^{2 \scriptscriptstyle +} + K^{\scriptscriptstyle +} + Ca^{2 \scriptscriptstyle +}$

Example : Penna Tunnel Repair

Basic Steps

- 1). Excavate tunnel system
- 2). Repacking trench
- 3). Gypsum & hydrated lime
- 4). Topsoil
- 5). Revegetate

Penna.

- 10m (75m) Long
- Excavation
- Refilling
- Gypsum
- Sandblocks
- (Poor compaction)
- \$??

Use of Sand Blocks

Excavate across trench/tunnel

Geotextile downslope wall

Fill with fine sand and gypsum 5% wt

Leave sand exposed on surface

Finished Repair Jobs

Traditional Approaches of ripping and filling have about 50% success rate

Compaction

- Prevents the movement of dispersed clay platelets through the surrounding soil.
- Dispersive soils are difficult to compact.
- Compact at 1.5 -2% above the optimum moisture content
- Track rolling is not good enough, need sheepsfoot roller.
- a D6 dozer applies 0.6 kg/cm² pressure compared to 9.3 kg/cm² for a sheepsfoot roller
- 98% Proctor dry density
- For dams compact to around 10-5 to 10-7 cm/sec .
- Get engineering advice

Use of rock

Mixed results ~ Carn't be relied upon.

Excavation, Cut & Fill

- Don't Cut and Fill
- Use Pier & Post
- Consider Hydrological isolation.

Repair of the Dunalley Tunnels

- Replaced Cable
- Low sodicity (ESP 2.4 -9.5) spoil from the excavated trench was treated with 1.0-1.3% gypsum
- 300m³ of non-sodic (ESP <6) soil was carted to the site and treated with 0.1% gypsum.
- Treated soil was repacked into the trench in 150mm thick layers using whacker packers.

Hardie, M, Cotching WE, Zund P (2007) Rehabilitation of field tunnel erosion using techniques developed for construction with dispersive soils. *Australian Journal of Soil Research* 45(4) 280–287.

Improved Trenches and supply of services

Improved Trenching

- Compaction with whacker packers.
- Use of Gypsum / hydrated lime.
- Topsoil burial

<u>Consider</u> •Overhead Power and Telephone •Rainwater tanks

Planning Schemes.

Brighton Example

- Mapping still not suitable at property level.
- Planners didn't understand the map.
- · Scaled response required
- · Resulted in limited use

1:10000 Brighton Land Use Suitability Mapping (Cumming 2003)

Guidelines for Development and Construction on Dispersive Soils.

Difficulties with

- •Obtaining external funding
- •Lack of research data & Information.
- Lack of awareness
- •Lack of secondary expertise & training.
- •Difficulty engaging councils.
- •Difficulty engaging engineers.
- •Lack of support from regulators / planners.

Long Term Building Codes Planning Schemes Dispersive Soils and Their Management : Technical Reference Manual for Councils, Consultants and Landholders.

Marcus Hardie Land Management Officer DPIWE

Contributions From;

Richard Doyle Bill Cotching

Tim Duckett Peter Zund

Brisbane City Council Approach

The aim of the proceduressoil erosion potential and **dispersion risk** during landdisturbing activities appropriately manage **dispersive soils**, degradation of water quality

Table 3 - Site Assessment Test Requirements

Required Testing - Level 1 Assessment	Number of Tests	
 Emerson Class Number – AS1289 3.8.1 An accurate visual 'Soil Classification' by a suitably experienced person – AS1726 Electrical Conductivity & pH – AS1289 4.3.1 Particle Size Distribution – AS1289 3.6.1 Dispersion Index – AS1289 3.8.2 (including PSD (fine) AS1289 3.6.3) 	Determined on representative topsoil & subsoil samples, (minimum 1 test from topsoil & subsoil horizon per 2 boreholes (ie. 8 tests for 8 boreholes)). To be undertaken on each sample. To be determined on a representative <u>upper</u> topsoil sample (ie. for revegetation assessment) and a	